Note: This syllabus is also available as a Word document.
Introduction
Algebra 1 provides students with the material outlined in the Maryland Core Learning Goals in Algebra 1 and Data Analysis. These goals include indicators that require experiences with problem solving and patterns, graphing linear equations, finding rates of change, solving equations and inequalities, working with polynomials and rational expressions, and examining quadratics and other non-linear functions. Students will take the Algebra/Data Analysis High School Assessment at the end of this course as a part of the high school graduation requirement if they have not passed the assessment prior to being enrolled in the Algebra 1 course.
Typically in a Math class, to understand the majority of the information it is necessary to continuously practice your skills. Some hints for success in a Math class include: attending class daily, asking questions in class, and thoroughly completing all homework problems with detailed solutions as soon as possible after each class session.
Class Information
Class Meets: Both A and B days
Room: 220
Text: Algebra 1, Glencoe (provided by school)
Materials and Calculators
Students are expected to bring a pencil, eraser, notebook, and loose leaf paper with them to class each day. The use of a graphing calculator is required, and a classroom set is provided to students while in school. While students may use any graphing calculator, the instruction in the course uses the TI-83 Plus. The TI-84 Plus is very similar and can be used as well.
Grading
Category | Brief Description
| Grade Percentage
|
Class Work
| Participation in work completed in the classroom setting. This includes but is not limited to: Warm-Ups, Worksheets, Vocabulary, and Active Class Participation. | 30% |
Homework | This includes all work completed independently as homework assignments | 20% |
Assessments | This category entails both the traditional (exams & quizzes) and alternative (presentations, projects, portfolios) methods of assessing student learning.
| 50% |
Your grade will be determined using the following scale:
- 90% - 100%: A
- 80% - 89%: B
- 70% - 79%: C
- 60% - 69%: D
- 59% and below: F
NOTE: Student grades can be viewed online on the PGCPS SchoolMax Family Portal.
Algebra/Data Analysis High School Assessment (HSA):
The Algebra HSA is an end-of-course exam that students take at the completion of algebra. PASSING the HSA is REQUIRED in order to receive a Maryland high school diploma. In order to fulfill this graduation requirement, students must earn a proficient score of
412 or higher. The Algebra/Data Analysis HSA assesses the student’s mastery of two of the three Maryland Core Learning Goals: functions and algebra and data analysis and probability. This 150 minute assessment uses multiple choice and student-produced response to assess mastery of the two goals. This end-of-course exam tests the skills and knowledge that students should be able to master after taking this course. Coursework in this subject is aligned with the Maryland Voluntary State Curriculum, which clearly outlines content, objectives, and skills. Additional information and sample tests are available at www.hsaexam.org.
Important Dates
First Day of SchoolMonday,August 22, 2011
Professional DevelopmentFriday,September 30, 2011
End of 1st Quarter (46 days)Friday,October 28, 2011
Grading/Teacher PlanningMonday,October 31, 2011
Parent/Teacher ConferencesFriday,November 11, 2011
End of 2nd Quarter (46 days)Friday,January 20, 2012
Grading/Teacher Planning DayMonday,January 23, 2012
Professional DevelopmentMonday,February 13, 2012
End of 3rd Quarter (46 days)Thursday,March 29, 2012
Grading/Teacher PlanningFriday,March 30, 2012
Last Day for Students (43 days)Friday,June 8, 2012
Last Day for TeachersMonday,June 11, 2012
Year at a Glance
First QuarterBy the end of First Quarter Algebra I students should be able to:
Data Analysis and Probability (Unit 1) - Perform operations on matrices & interpret solutions in real-world context
- Find the mean, median and mode
- Describe the central tendency of a set of data
- Construct and analyze box-and-whisker plots
- Summarize data and draw informed conclusion
- Investigate and analyze data that uses statistical methods
- Define a simple random sample
- Identify possible sources of bias in other types of samples
- Analyze graphs and statistical methods
- Communicate the misuse of statistics
- Investigate the relationship between estimates obtained from samples and theoretical probabilities
- Apply the basic concepts of statistics and probability
- Predict possible outcomes of real-world situation
- Design models
- Simulate actual events using various random devices
Understanding Functions (Unit 2) - Interpret, sketch, and analyze graphs from situations
- Identify relations and functions
- Evaluate functions
- Model functions using rules, tables and graphs
- Write function rule given table or real-world situation
- Use inductive reasoning in counting number patterns
- Write rules for arithmetic sequences
- Model arithmetic sequence as linear function
- Translate and solve real world situations into algebraic equations
- Find input value given the output value, and vice versa
- Year at a Glance - Second Quarter
Second QuarterBy the end of Second Quarter Algebra I students should be able to:
Solving Equations (Unit 3) - Represent an unknown amount when writing equations from a verbal sentence
- Use properties of equality to solve equations
- Solve one step equations
- Solve two step equations
- Solve multi-step equations
- Utilize the working backwards strategies to solve multi-step equations
- Solve equations with variables on both sides
- Using distributive property of equality to solve equations with the variable on each side
- Write ratio and proportion to solve real world problems
- Explain and justify algebraic procedures and solutions for solving equations
- Define vocabulary
- Solve open sentences
- Solve uniform motion problems
- Solve literal equations using formulas
Linear Functions and Equations (Unit 4) - Find rates of change/slope from tables and graphs
- Write and graph linear equations using slope-intercept form, standard form and point-slope form
- Use x- and y -intercepts to graph linear equations
- Write linear equations using data
- Determine whether lines are parallel, perpendicular or neither
- Write equations for trend line/line of best fit
- Use line of best fit to make predictions
Linear Inequalities (Unit 5) - Identify solution sets for inequalities
- Graph linear inequalities
- Solve one step inequalities
- Solve two step inequalities
- Solve multi-step inequalities
- Solve compound inequalities
- Define absolute value
- Solve absolute value inequalities
Third QuarterBy the end of Third Quarter Algebra I students should be able to:
Systems of Linear Equations and Inequalities (Unit 6) - Analyze special types of systems
- Solve system of equations by graphing
- Solve system of equations by substitution
- Solve system of equations by elimination
- Solve system of equations using inverse matrices
- Identify the boundary line and solution region of system of inequalities
- Solve system of inequalities by graphing
- Solve system of inequalities by substitution
- Solve system of inequalities by elimination
Non-Linear Functions (Unit 7) - Model geometric sequence as functions
- Define non-linear functions
- Describe non-linear graphs using the concepts of maxima, minima, zeros, domain, range and continuity
- Use graphing calculator to view tables, graphs and equation of non-linear functions
- Graph non-linear functions
- Interpret graph of non-linear functions
- Relate real world problems to special functions
- Translate graphs of absolute value equations
- Translate and solve real world situations into algebraic equations
Exponents and Exponential Functions (Unit 8) - Define and describe exponents and exponential functions
- Expand exponential expressions
- Utilize laws of exponents to simplify algebraic expressions
- Use Properties of Exponents (commutative, associative and distributive property) to simplify exponential expressions and functions
- Convert scientific notation to decimal form and vice versa
- Explore the calculator notation to work with very large or very small numbers
- Apply the rules for multiplying powers of 10
- Construct understanding of exponential function relationships
- Graph exponential growth and decay
- Apply exponential growth and decay to solve real world problems
- Solve problems involving percent increase and percent decrease
Fourth QuarterBy the end of Fourth Quarter Algebra I students should be able to:
Polynomials and Applications (Unit 9) - Use all types of adding, subtracting, multiplying, and dividing polynomials in real world applications
- Use FOIL method and distributive property to multiply polynomials
- Factor ax2+ bx + c and special cases
- Factor polynomials by grouping
- Model real world situation using polynomials
Quadratic Equations and Functions (Unit 10) - Solve quadratic equations by factoring, completing the square, and the quadratic formula
- Use Zero property to solve quadratic equations
- Transform the parent function of quadratic, f(x) = x2
- Understand the use of the discriminant
- Graph quadratic functions by hand using the following properties: X and Y Intercepts, axis of symmetry, vertex
- Graph quadratic functions using the calculato